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Background & Methods
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The pathway from discovery to clinical adoption of predictive spatial Figure 1: Ultrahigh-plex PhenoCode Discovery panels and Figure 2: Imaging of Human Breast Cancer (A) and Lymphoma (H)
biomarkers (spatial signatures) for immunotherapy response requires a PhenoCode™ Signature panels during discovery to clinical adoption using the PhenoCode Signature M1/M2 Polarization Human Protein
solution that effectively bridges ultrahigh-plex discovery experiments Panel and higher magnification images (B-G, I-N)
with targeted high-throughput translational and clinical studies. A critical Discovery ) Translational ) Clinical )
step toward ensuring the successful transition is the harmonizing of

technologies for staining, imaging, and data analysis. The aim of this Spatial Spatial
study is to demonstrate how the integration of spatial multiplexed Neighborhoods Signatures
Imaging technologies and associated data analysis methods provides \ o RN o St B VR

an effective workflow for the spatial phenotyping of the tumor
microenvironment (TME) across the discovery to clinical continuum.

Here we profiled an array of human formalin-fixed, paraffin-embedded J PhenoCode Discovery \J -
(FFPE) cancer tissues using ultrahigh-plex PhenoCode Discovery —_— " AR R e T
panels (PDP) comprising of cell lineage, structural, immune activation, e : ‘ ELT Sid
and checkpoint markers on the PhenoCycler®-Fusion (PCF) spatial
biology platform (Figure 1). This was followed by running PhenoCode™
Signature panels (PSP) targeted to key biomarkers of immune
contexture, macrophage polarization, and T cell activation status
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using the Phenolmager® HT platform. Image analysis was performed

using Visiopharm’s deep learning algorithms on multiplexed images to DN .o e Coos, COas

segment specific tissue regions of interest (ROI) and to perform Profiling Module

accurate cell detection and classification of different cell phenotypes - ey e € &
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explored using spatial neighborhood analysis.

*Same markers are in PhenoCode Signature M1/M2 Polarization Human Protein Panel
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Figure 3: Image Analysis workflow Figure 4: Al-based ROI Classification Figure 5: Example Cell Segmentation using Al Deep Learning for Immune cells
in Breast Cancer Core (A-D) and Macrophages (E-H) in Breast Cancer Core
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