

PREDICTIVE SPATIAL SIGNATURES FOR THE NEXT GENERATION OF COMBINATION THERAPIES

Get Higher Predictive Accuracy

The development of clinically useful biomarkers to select responders for combination therapies will be critical for the advancement of such treatments. A recent meta-analysis¹ has shown that spatial phenotyping, enabled by multiplexed imaging, more accurately predicts patient response to anti-PD-1/PD-L1 therapy than other biomarker modalities. Spatial signatures are a novel biomarker class developed by spatial phenotyping the tumor microenvironment (TME) that can better predict immunotherapy response.

1. Lu S, et. al., JAMA Oncol. 2019, 5(8):1195-1204

INTRODUCING PHENOCODE SIGNATURE

Designed for the ever-changing combination therapy landscape

RELEVANT

Answer the most pertinent questions to interrogate the TME

FLEXIBLE

Answer novel questions by adding your marker of choice

FAST

Speed up spatial signature development by 3X

SCALABLE

Seamlessly translate discoveries into predictive biomarkers with the PhenoImager® solution

START WITH ASKING THE RIGHT QUESTIONS

FLEXIBILITY TO ANSWER MORE QUESTIONS QUICKLY

PhenoCode Signature panels are designed to provide flexibility, allowing for the easy integration of one additional marker to a 5-plex panel. Analyze additional cell phenotypes or address your specific research question with your own marker of choice.

SPEED UP SPATIAL SIGNATURE DEVELOPMENT BY 3X

PhenoCode Signature panels are optimized and validated to enable the rapid development of spatial signatures by shortening the assay development time by 3X.

ASSAY DEVELOPMENT AND OPTIMIZATION

Suppression Index: Numbers of FoxP3+ and PD-L1+ cells within a 3-lymphocyte-wide distance (30µm) around CD8+ T cells

CASE STUDY

Spatial Signature Spotlight

The spatial suppression index based on organization of tumor-infiltrating immune cells is a strong prognostic marker. The distance from FoxP3+ Tregs to CD8+ T cells and PD-L1+ cells to CD8+ T cells predicts the outcome in HPV(-) OSCC.

	PD-L1 _{30µm} CD8n	FoxP3 _{30µm} CD8n	Suppression Index (SI)	Overall Survival
Top 50%	/	/	High	Low
Top 50%	/	_	Intermediate	Med
Top 50%	-	✓	Intermediate	Med
Lower 50%	-	-	Low	High

Source: Feng Z, et al. Multiparametric immune profiling in HPV- oral squamous cell cancer. JCI Insight. 2017;2(14):e93652. $https://doi.org/10.1172/jci.insight.93652. \ Used \ under the terms of the CC BY 4.0 \ license.$

THE PERFECT END-TO-END SOLUTION FOR SPATIAL SIGNATURE DEVELOPMENT

The development of spatial signatures requires a solution that easily integrates staining, imaging, and analysis using existing workflows while providing accuracy and reproducibility.

Whole-slide staining of tissues using PhenoCode Signature panels.

PhenoImager HT's patented MSI technology provides rapid whole-slide image acquisition with walkaway automation.

Visualize and interpret using Akoya's software suite or open-source solution.

